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Abstract

Damage localization approaches based on changes of flexibilities constitute an important technique for
damage detection. However, the unavailability of flexibility matrix with output-only data makes flexibility-
based approaches not really applicable in the very important cases of ambient vibrations. An algorithm is
presented to construct a proportional flexibility matrix (PFM) from a set of arbitrarily scaled tested modal
shapes and modal frequencies. The constructed PFM is just within a scalar multiplier to the real flexibility
matrix, and the scalar multiplier is theoretically the first modal mass, which is undetermined before the
mode is properly scaled. Instead of real flexibilities, the PFMs are incorporated into the damage locating
vectors (DLV) method for damage localizations in ambient vibrations. PFMs for the pre- and post-
damaged structure need to be comparable before being integrated into the DLV procedure. This
requirement is guaranteed when there is at least one reference degree with unchanged mass after damage.
Two numerical examples show that a small number of measured modes can produce PFMs with sufficient
accuracy to correctly locate the damages by the DLV method from output-only data.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural health monitoring (SHM) is emerging as a frontier in the field of civil structural
engineering as a technology to enhance safety of key infrastructures [1], like high-rise buildings,
bridges, dams and offshore structures, whose failures pose great impact on economy and society.
In the range of SHM, damage detection based on changes of dynamic properties of structures is
one of the challenges, and flexibility-based damage localization methods are among the most
developed techniques [2–5]. Flexibility has the advantage that it can be constructed by truncated
modes at sensor locations without loss of much accuracy. For the numerous flexibility-based
damage detection methods, damage locating vectors (DLV) method proposed by Bernal [5] for
damage localizations is the most recently proposed method with mathematical rigor and easiness
to operate.

However, only in the condition when at least one sensor–actuator pair exists, the flexibility can
be assembled from the measured modal parameters [6]. For the prevailing ambient vibration for
civil structures, in which the loads and their locations are unknown or not exactly known,
construction of flexibility matrix is still an unsolved problem. We may use the analytical model to
compute mass-normalized modal shapes from arbitrarily scaled ones, but for a real complex
structure, it is not an easy work to set up an analytical model that is consistent with its real model.
Therefore, flexibility matrices are not readily available for ambient vibrations in practice.

An approach is proposed to assemble a proportional flexibility matrix (PFM) from arbitrarily
scaled modes and modal frequencies with output only data. The DLV method for damage
localizations is extended to the ambient vibrations by integrating the proposed PFMs into the
frames of DLV method. The remainder of this paper is organized as follows. The DLV method
is introduced first. The algorithm to construct PFM is then presented. PFMs of pre- and post-
damaged structures are properly scaled to employ the DLV method to make damage
localizations. Finally, two numerical examples, which are damage localizations of a 7-dofs
mass–spring system and a 53-dofs truss structure, are given to demonstrate the capability of the
presented approach in output-only cases.
2. Damage locating vectors (DLV) method

The DLV method, developed by Bernal [5], is a general approach to extract spatial information
for damage localization from changes in measured flexibility. The fundamental idea of the DLV
approach is that the vectors that span the null-space of change in flexibility (between the pre- and
post-damage states) induce no stress in the damaged elements (small in the presence of truncations
and approximation) when they are treated as static loads on the structure.

First a special set of vectors, designated DLVs, is determined by singular value decomposition
(SVD) to the incremental flexibility. Secondly, the internal forces in every element of the
undamaged structure with the DLVs as loads are calculated. The elements having negligible
internal forces can be identified as the elements that are possibly damaged.

The procedures of the DLV localization can be summarized as follows:
In the first place, flexibility matrices at sensor locations are assembled from measured data

for the cases before and after damage, denoted FU and FD, respectively. Then the change in
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flexibilities is computed as

FD ¼ FU � FD: (1)

Through SVD to FD the DLVs are obtained, namely

FD ¼ USVT ¼ ½U1 U0�
s1 0

0 0

� �
VT

1

VT
0

" #
: (2)

For ideal conditions the DLVs are simply V0 that are the columns of the right singular matrix V

associated with the null space. But in practical applications the singular values corresponding to
V0 are never equal to zero due to noise and computational errors. To select the DLVs from V, an
index svn was proposed by Bernal [5] and defined as

svni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sic

2
i

max
k

ðskc2
kÞ

vuut for i ¼ 1 : m; (3)

where m is the number of columns in V; si is the ith singular value of the matrix FD; ci is a constant
that is used to normalize the maximum characterizing stress in undamaged structure element,
which is induced by the static load ciVi, to have a value of one. The vector Vi can be taken as a
DLV if svnip0.20.

Once the set of DLVs have been obtained, the damage localization can be carried out as such
that each of the DLVs is applied to the undamaged structure, and the characterizing stress in each
structural element is computed. Then for each DLV vector, the normalized stress s̄j in the jth
element is defined as the characterizing stress sj normalized by the largest characterizing stress
over all the elements of its kind:

s̄j ¼
sj

max
k

ðskÞ
: (4)

In order to introduce additional robustness into the technique, the information from multiple
DLVs should be combined. The vector of weighted-average stress indices for each of the DLVs,
WSI, need to be calculated to select the potentially damaged elements:

WSI ¼

Pndlv
i¼1 fs̄jgi=svni

ndlv
; (5)

in which

svni ¼ maxðsvni; 0:015Þ;

where ndlv is the number of DLVs and fs̄jgi is the vector of s̄j values for the ith DLV. Then the
elements having WSIo1 are generally treated as damaged elements.

The DLV method provides an approach with mathematical rigor for damage localization, and
what is more appealing is that it is effective when operated with multiple damage scenarios, a
truncated modal basis and an arbitrary number of sensors, while keeping the calculation to a low
level. However, in the condition of ambient vibrations, which prevail in civil structures, the
flexibility cannot be assembled from arbitrarily scaled modes. The following part is to propose an
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algorithm for creation of proportional flexibility matrix with arbitrarily scaled modes, and extends
the DLV method to output only cases with the proposed PFMs.
3. Construction of proportional flexibility matrix

The structural flexibility matrix F can be assembled from a set of mass-normalized modal shape
j̄i and circular modal frequencies ōi as

F ¼
XN

i¼1

1

ō2
i

j̄ij̄
T
i ; (6)

where N is the number modes of the structure. In practice, rarely are all N modes identified from
the vibration data, but flexibility can be estimated with sufficient accuracy from truncated low
modes because it is inversely proportional to the square of modal frequencies. However, in the
condition of ambient vibration, where arbitrary-scaled test modal shapes rather than mass
normalized ones are presented, assembling flexibility matrix via Eq. (6) is not feasible.

The usually available arbitrary scaled test modal shape ji can be written as

ji ¼ rij̄i; (7)

in which ri is the mass normalization factor for ith mode. Substituting Eq. (7) into Eq. (6), one
can get

F ¼
XN

i¼1

1

ðriōiÞ
2
jij

T
i ¼

XN

i¼1

1

o2
i

jij
T
i ; (8)

in which

oi ¼ riōi: (9)

Comparing Eq. (8) with Eq. (6), ji is the ith mass normalized modal shape with respect to modal
frequency oi:

The flexibility matrices in Eqs. (6) and (8) can be taken as those of two different structures,
denoted as real structure and ‘‘dummy structure’’, respectively. Obviously the two flexibility
matrices are the same, and that means the two structures have identical stiffness matrices. But
these structures have different mass matrices and modal frequencies. The identities and differences
between the two structures are identified in Table 1.

The dummy structure can be created by scaling and redistributing the mass of the real
structure in such a way that the arbitrarily scaled modal shapes of the real structure are mass
normalized to the obtained mass matrix of the dummy structure, while keeping the modal
shapes unchanged. The scaling and redistributing of mass will not alter the stiffness distribution of
the real structure, and thus guarantee that the dummy and real structures have the same
stiffness matrices.

The above description for creation of dummy structure can be realized by computing the mass
matrix of the dummy structure Mr through solving the following equations:

UTMrU ¼ I; (10)
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Table 1

Identities and differences between the real and dummy structures

Structures Stiffness

matrices

Mass matrices Modal shapes Modal frequencies

Real Identical Different Identical, but for dummy

structure, the modal shapes

are mass normalized

Different, but relationship

(9) between those of two

structures exists

Dummy
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in which U is the arbitrarily scaled modal matrix of the real structure with ji as its modal vector. I
is the identity matrix. The elements in Mr are unknowns to be solved. Usually there are more
unknowns than the equations in Eq. (10), and a least-square solution is pursued by
Moore–Penrose inverse operation.

For the real and dummy structures, two eigenequations are, respectively,

ðK� ō2
i M0Þji ¼ 0 for real structure; (11)

ðK� o2
i MrÞji ¼ 0 for dummy structure; (12)

where M0 is the mass matrix for the real structure, and K is the stiffness matrix for both real and
dummy structures. M0 and K in above equations are unknown.

Substituting Eq. (12) into Eq. (11), the following equation is obtained:

Mr �
1

r2i
M0

� �
ji ¼ 0; (13)

where ri and the elements in M0 are unknowns to be solved. Obviously, the number of unknowns
is much more than that of equations that Eq. (13) provides. To reduce the unknowns, M0 can be
reasonably assumed diagonal. Then the number of unknowns in Eq. (13) is only one more than
the number of equations for every given modal vector ji:

If the diagonal matrix M0 is normalized in a certain way, like making a designated diagonal
element to be one, i.e.

M0 ¼
1

rM

M̄0; (14)

where M̄0 is the normalized matrix with one diagonal element to have the value of one by dividing
M0 by 1/rM. Eq. (13) is rewritten as follows with the substitution of Eq. (14) in it:

Mr �
1

Zi

M̄0

� �
ji ¼ 0; (15)

where

Zi ¼ r2i rM : (16)

Then a unique solution for Zi and M̄0 is obtained for each modal vector ji by solving
Eq. (15).
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Although Zi is known by the above procedure, the mass normalization factor ri cannot be
identified in Eq. (16). However, the ratio between r2i and r21 can be evaluated as that of Zi and Z1;

gi ¼
r2i
r21

¼
Zi

Z1

: (17)

Then flexibility matrix in Eq. (8) can be assembled as

F ¼
1

r21

XN

i¼1

1

giō
2
i

jij
T
i ¼

1

r21
FP (18)

and the PFM FP is obtained as

FP ¼
XN

i¼1

1

giō
2
i

jij
T
i ; (19)

which is within a scalar of r21 to the real flexibility matrix F. r21 is actually the first modal mass of
the real structure, and it is undetermined because of the arbitrarily scaled test modal shapes. In
whatever way the modes are scaled, FP in Eq. (19) is proportional to the real flexibility matrix F,
and the scalar multiplier between F and FP depends on the scale of the modes. An example to
illustrate the construction of PFM for a 7-dofs system is provided later.
4. Damage locating vectors method with PFMs

PFMs for the pre- and post-damaged structures, denoted as FPU and FPD, respectively, can be
constructed by the procedure presented above. Then FPU and FPD take the places of FU and FD in
Eq. (1), and the flexibility difference is rewritten as

FD ¼
1

r21U

FPU �
r21U

r21D

FPD

� �
; (20)

in which r21U and r21D are the first modal masses for the pre- and post-damaged structures,
respectively. The bracketed part in Eq. (20) is named proportional flexibility difference FPD,
which is

FPD ¼ FPU �
r21U

r21D

FPD: (21)

As shown in Eq. (20), FPD is within a scalar of r21U to FD, then the null-space of FPD is the same
as FD. Therefore the DLVs, which induce zero stresses in potentially damaged members of
structures, can be extracted through SVD to FPD instead of FD.

The proportional flexibility difference FPD is undetermined until the ratio between r21U and r21D

has been established. With r21U or r21D not being identified in Eq. (16) in mind, the ratio between
r21U and r21D cannot be calculated directly. But if the rM s for the pre- and post-damaged structures
are the same, then r21U=r21D can be replaced with Z1U=Z1D; in which the numerator and
denominator are obtained by solving Eq. (15) with the first modal vectors for the pre- and post-
damaged structures. This is true when there exists in the mass matrix at least one element that
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does not change in the pre- and post-damaged states, and the normalizations of mass matrices M0

of both pre- and post-damaged structures through Eq. (14) are made on those unchanged
elements.

At this point, FPD is determined and the DLV method outlined in the foregoing part can be fully
implemented on FPD.
5. Examples

Two examples are examined, which are multi-damage localizations of a 7-dofs mass–spring
system and 14-bay planar truss structure, respectively.
5.1. Example 1

The 7-dofs mass–spring system as shown in Fig. 1 was picked up from [7] m1=2kg, m2=5kg,
m3=4kg, m4=4kg, m5=3kg, m6=2kg, m7=1kg. The stiffness of each spring is 104N/m.

The structure is excited by independent band-limited white noises at m1 and m5. Accelerations
are measured, and 5% RMS noise is added to all the outputs. Classical damping for each mode
with critical damping ratio of 1% is modeled. The damage is simulated as a reduction by 30% of
k24 and by 50% of k67. To simulate the ambient vibrations, inputs are not collected.

In this example the ERA [8] and NExT [9] are used to perform the modal identification without
using the input information. The identified first three modes for both the intact and damaged
structures are shown in Table 2.

In this example the first three modes are used in constructing PFM. Presuming Mr is symmetric,
a group of nine linear equations is formulated to solve 28 unknowns by Moore–Penrose inverse
operation in Eq. (10). Then M0 is normalized by letting the first element to be one, and rM in
k60

k46 k67k34

k45 k57k24
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k30

k12
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Fig. 1. 7-dofs spring–mass system.
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Table 2

Identified modal parameters of 7-dofs system

Undamaged Damaged

1st mode 2nd mode 3rd mode 1st mode 2nd mode 3rd mode

Frequency (Hz) 4.17 8.24 12.26 4.09 7.62 12.06

Modal vector 1.00 1.00 1.00 1.00 1.00 1.00

0.87 0.45 �0.20 0.88 0.53 �0.19

0.54 0.07 �0.67 0.54 0.08 �0.74

0.66 �0.32 �0.26 0.63 �0.37 �0.32

0.72 �0.99 0.40 0.75 �1.05 0.48

0.44 �0.47 �0.05 0.39 �0.43 �0.06

0.60 �0.84 0.31 0.65 �1.00 0.49
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Eq. (14) is the first element of M0 . For each modal vector ji; i=1–3, Eq. (15) is solved for Zi and
M̄0: For pre-damaged structure, Ziði ¼ 1; 2; 3Þ are 4.66, 3.46 and 2.44, respectively, and for
damaged structure are 4.58, 3.40 and 2.66.

Then the Ziði ¼ 1; 2; 3Þ for both pre-damaged structure and damaged structure are incorporated
into Eqs. (17) and (18) to compute the FPU and FPD. The multipliers between elements in the PFM
and those in flexibility matrix are shown in Fig. 2. It is shown that all the element multipliers are
evenly scattered around 11 with less than 8% deviation. Therefore, the elements multipliers can be
the scalar multiplier between the PFM and flexibility matrix.

Applying the SVD to the proportional flexibility difference FPD, one finds there is one DLV.
The WSI coefficients for all elements are presented in Table 3 and plotted in Fig. 3. As can be seen
in Table 3, the set with WSI=1.6858 and 2.5461 contain the elements, k24 and k67, that are
actually damaged. It is obvious from Fig. 3 that the damaged members are successfully located
when only outputs are measured.
5.2. Example 2

A more real structure consists of 28 nodes and 53 members as shown in Fig. 4. The total length
of the structure is 5.56m with 0.40m in each bay, and the height of the structure is 0.40m. The
members are steel bars with tube cross section with an inner diameter of 3.1mm and an outer
diameter of 17.0mm. The elastic modulus of the material is 1.999	 1011N/m2, and the mass
density is 7827 kg/m3. The members are connected at pinned joints. There are two supports at the
ends of the structure: a pin support at the left end and a vertical roller support at the right end.
The structure totals 53 dofs. One percent classical damping for every mode is modeled for this
structure.

Damages in the structure is modeled by loss of sections in member 3, 17, 27, 50 and 53, and
their reductions of section are by 70%, 90%, 90%, 70% and 90%, respectively. The excitations
used to generate the vibration data is random white noise applied along the vertical direction at
node 4, and the output is taken to be accelerations.
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Table 3

The WSI Indices for 7-dofs system

Element WSI Element WSI

1 52.2593 6 15.2243

2 60.2081 7 66.6667

3a 1.6858 8 48.8963

4 61.8939 9a 2.5461

5 40.3163 10 42.5429

aIndicates damaged elements.

Fig. 2. Multipliers between elements in the PFM and those in flexibility matrix: (a) Undamaged structure; (b) Damaged

structure.

Z. Duan et al. / Journal of Sound and Vibration 284 (2005) 455–466 463
Acceleration responses from 13 measured degrees are used by the stochastic subspace
identification (SSI) to perform the modal parameter identification. The identified first eight
modes, as well as the analytical ones are shown in Table 4.
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Fig. 3. WSI Indices for 7-dofs system (element 3 and 9 are damaged).
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Fig. 4. The 14 bays truss.

Table 4

Analytical and identified natural frequencies of 14 bays truss

Modes Analytical results Identified results

Undamaged Damaged Undamaged Damaged

1 8.7497 6.9374 8.7876 6.8875

2 29.5650 20.4471 29.5644 20.4286

3 43.3810 26.8073 43.3975 26.8026

4 59.0027 45.1092 58.9927 45.1030

5 90.4837 71.9382 90.4516 71.9344

6 119.6018 102.4855 119.5438 102.4426

7 124.2574 115.5995 124.1895 115.5516

8 150.7169 121.5042 150.5921 121.4425

Z. Duan et al. / Journal of Sound and Vibration 284 (2005) 455–466464
The identified first eight modes are used to construct the PFMs both for the intact and damaged
structures. The axial force distribution and the WSI coefficients for the truss members are
calculated as index for locating damages. As can be seen in Table 5, the set with WSI=2.1578,
1.2116, 0.7928, 2.1238 and 0.5653 contains the truss members that are actually damaged (truss
member 3, 17, 27, 50, 53). The results shown in Fig. 5 also demonstrate that DLV method
incorporated with PFMs successfully detects the multi-damage locations in this example.
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Table 5

The WSI indices for 14 bays truss

Element WSI Element WSI Element WSI

1 12.1469 19 14.3285 37 12.3934

2 11.8434 20 17.4407 38 12.3921

3a 2.1578 21 14.8924 39 13.3738

4 11.7236 22 18.4564 40 11.7141

5 8.4295 23 19.6447 41 7.9080

6 7.6756 24 13.0013 42 17.7020

7 11.3544 25 17.0868 43 13.6868

8 10.2909 26 13.8530 44 17.4265

9 13.7601 27a 0.7928 45 10.6663

10 8.3478 28 16.5072 46 10.5446

11 12.3740 29 19.0341 47 12.9813

12 14.1215 30 11.7603 48 7.2067

13 19.7494 31 20.5268 49 11.5803

14 13.6537 32 15.2066 50a 2.1238

15 18.4759 33 13.9287 51 15.9898

16 17.8310 34 12.0985 52 16.0632

17a 1.2116 35 17.9911 53a 0.5653

18 15.6092 36 13.2462

aIndicates damaged elements.

10 20 30 40 50
0

5

10

15

20

W
S

I

Element Number

Fig. 5. WSI Indices for 14 bays truss (truss member 3, 17, 27, 50 and 53 are damaged).
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6. Conclusions

A procedure to construct proportional flexibility matrix is presented with only output data
where flexibility matrix is not achievable. With the introduction of dummy structure in relevancy
with the real structure, the PFM is constructed within a scalar to the real flexibility matrix, and the
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scalar is shown to be the first modal mass. The proposed PFMs are integrated into available
damage detection techniques, such as DLV method for damage localization. The comparability of
PFMs for the pre- and post-damaged structures is guaranteed when the mass does not change
significantly after damages. The proposed method is examined by two examples, and the multi-
damages scenarios are successfully identified for a simple 7-dofs spring–mass system and a 14-bay
planar truss structure. Due to simplifications, approximate solutions and computation errors, the
in-proportionality of PFM to real flexibility is within the range such that DLV method can make
correct damage localization. In both examples, the two-damage scenario and five-damage
scenario are successfully identified by DLV method integrated with PFMs with only output data.
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